\qquad
\qquad Class \qquad

SECTION

Ready to Go On? Skills Intervention
1-1 Understanding Points, Lines, and Planes
Find these vocabulary words in Lesson 1-1 and the Multilingual Glossary.

Vocabulary point segment	line endpoint	plane ray	collinear opposite rays	coplanar

Naming Points, Lines, and Planes

A. Name collinear points.

Points that lie on the same line are \qquad
Name three points on line r. \qquad
Name the points on line s. \qquad
B. Name lines.

To name a line, use either \qquad ,
or two \qquad -.

Name line s using two points on the line. \qquad
Name the line containing point Z. \qquad

Identifying Points and Lines in a Plane

In what plane does Z lie? \qquad
What other points lie in this plane? \qquad

Drawing Segments and Rays

Draw and label each of the following.
A. A segment with endpoints H and Z

Draw two dots and label them H and Z
Use a straightedge to connect the points.
B. ray $\overrightarrow{T R}$

Draw two dots and label them T and R.
Beginning at T, connect the points and extend through R.
Draw an arrow to indicate that the ray extends forever.
\qquad
\qquad
\qquad

SECTION

Ready to Go On? Skills Intervention

1A 1-2 Measuring and Constructing Segments

Find these vocabulary words in Lesson 1-2 and the Multilingual Glossary.

Vocabulary coordinate between	distance midpoint	length bisect	congruent segments	construction

Finding the length of a segment Find each length.
A. MP

What are the coordinates of M ? \qquad and P ? \qquad
$M P=$
 -
\square
$=$ \qquad
\square Substitute the coordinates of M and P. Subtract.
Take the absolute value of the difference.
B. $N Q$

What are the coordinates of N ? \qquad and Q ? \qquad
$N Q=$ \qquad - \qquad
$=$

$=$ \qquad Substitute the coordinates of N and Q. Subtract.
Take the absolute value of the difference.

Using the Segment Addition Postulate

A. L is between K and M. $K L=43$ and $K M=61.5$. Find $L M$.

Since L is between K and $M, K L+$ \qquad = \qquad .
Substitute the known lengths into the equation: \qquad $+L M=$ \qquad
Solve the equation to find $L M$. \qquad
B. B is between A and C. Find $A B$.
Since B is between A and $C, A B+$ \qquad
\qquad

$A B=$ \qquad $B C=$ \qquad $A C=$ \qquad
Substitute these values into the equation. \qquad $+$ \qquad $=$ \qquad
Simplify the right side of the equation. \qquad $=$ \qquad
Get the variable on one side of the equation.

$=$ \qquad
Simplify.
$]^{-}=$ \qquad
Substitute the value of x to find $A B$.
$A B=11 x+14$
Simplify.
$=11\left(_\right)+14=$ \qquad

Using Midpoints to Find Lengths

Point M is the midpoint of $X Y . X M=5 x+3$, and $M Y=9 x-25$.
Find $x, X M, M Y$, and $X Y$.
Since M is the midpoint of $X Y$, what do you know about $X M$ and $M Y$? \qquad
Write an equation by substituting expressions for $X M$ and $M Y$. \qquad
Solve the equation to find the value of x. \qquad
$X M=5 x+3=$ \qquad ; $M Y=9 x-25=$ \qquad ; $X Y=$ \qquad
\qquad
\qquad
\qquad

SECTION
 Ready to Go On? Skills Intervention
 1-3 Measuring and Constructing Angles

Find these vocabulary words in Lesson 1-3 and the Multilingual Glossary.

| Vocabulary
 angle measure
 congruent angles | acute angle
 angle bisector | right angle obtuse angle |
| :--- | :--- | :--- | :--- |

Naming Angles
 Name angles in the diagram.

You can name an angle in three ways: by its \qquad ,
by a \qquad on each ray and the \qquad
or by a \qquad .
How many angles are in the diagram? \qquad

Point P is called the \qquad of all of the angles.
Name three angles. \qquad

Measuring and Classifying Angles Find the measures of each angle. Then classify each angle as acute, right, or obtuse.
A. $\angle A O C$

The measure of an angle is the \qquad of the
\qquad of the real numbers that the

rays correspond with on a protractor.
$\mathrm{m} \angle A O C=$ \qquad - \qquad $=$ \qquad .
If an angle measures greater than 90° and less than 180°, the angle is \qquad .
So, $\angle A O C$ is a(n) \qquad angle.
B. $\angle A O B$

The real number that $\overrightarrow{O A}$ corresponds with is \qquad .
The real number that $\overrightarrow{O B}$ corresponds with is \qquad .
$\mathrm{m} \angle A O B=$
 - \qquad $=$ \qquad ; \qquad
\qquad $=$ \qquad .
If an angle measures greater than 0° and less than 90°, the angle is \qquad .
So, $\angle A O B$ is a(n) \qquad angle.

Finding the Measure of an Angle

$\overrightarrow{T X}$ bisects $\angle M T R, \mathrm{~m} \angle M T X=(9 x-7)^{\circ}$, and $\mathrm{m} \angle X T R=(6 x+8)^{\circ}$. Find $\mathrm{m} \angle X T R$.
Since $\overrightarrow{T X}$ bisects $\angle M T R, \mathrm{~m} \angle M T X=$ \qquad .
Substitute the given values and write an equation. \qquad
Solve for x.
To find $\mathrm{m} \angle X T R$, substitute \qquad for x.
$m \angle X T R=6 x+8=6($ \qquad) $+8=$ \qquad \circ
\qquad Date \qquad Class \qquad

SECTION
 Ready to Go On? Skills Intervention
 1A 1-4 Pairs of Angles

Find these vocabulary words in Lesson 1-4 and the Multilingual Glossary.

| Vocabulary
 adjacent angles linear pair complementary angles \quad supplementary angles |
| :--- | :--- | :--- |

Identifying Angle Pairs

Tell whether the angles are only adjacent, adjacent and form a linear pair, or not adjacent.
A. $\angle 3$ and $\angle 4$

Do $\angle 3$ and $\angle 4$ have a common vertex?
Do $\angle 3$ and $\angle 4$ have a common side?
Do $\angle 3$ and $\angle 4$ have common interior points? \qquad -.
B. $\angle 7$ and $\angle 8$

Do $\angle 7$ and $\angle 8$ have a common vertex? \qquad Do $\angle 7$ and $\angle 8$ have a common side? \qquad
Do $\angle 7$ and $\angle 8$ have common interior points? \qquad $\angle 7$ and $\angle 8$ are \qquad .
C. $\angle 5$ and $\angle 6$

Do $\angle 5$ and $\angle 6$ have a common vertex? \qquad Do $\angle 5$ and $\angle 6$ have a common side? \qquad
Do $\angle 5$ and $\angle 6$ have common interior points? \qquad
$\angle 5$ and $\angle 6$ are \qquad .

Finding the Measures of Complements and Supplements If $m \angle R=(14+3 x)^{\circ}$, find each of the following.
A. complement of $\angle R$

To find the measure of the complement of an angle, \qquad the measure of the angle from \qquad .
Find the measure of the complement of $\angle R$ by subtracting $(14+3 x)^{\circ}$ from \qquad .
\qquad $-(14+3 x)^{\circ}=$ \qquad $=($ \qquad $)^{\circ}$
B. supplement of $\angle R$

To find the measure of the supplement of an angle, \qquad the measure of the angle from \qquad .
Find the measure of the supplement of $\angle R$ by subtracting $(14+3 x)^{\circ}$ from \qquad .
\qquad

$$
-(14+3 x)^{\circ}=
$$

\qquad $=$ \qquad
\qquad
\qquad
\qquad

SECTION Ready to Go On? Quiz

1-1 Understanding Points, Lines, and Planes
Draw and label each of the following.

1. a line containing points R and S
2. a ray with endpoint B that passes through L
3. a plane containing a segment with endpoints X and Y
4. three coplanar lines intersecting in three points.

Name each of the following.
5. three collinear points \qquad
6. a plane containing X, B, and Y
7. two segments \qquad
8. a line containing A and T \qquad

1-2 Measuring and Constructing Segments

Find the length of each segment.
9. $\overline{D B}$ \qquad
10. $\overline{A B}$ \qquad

11. $\overline{A C}$ \qquad
12. Sketch, draw, and construct a segment congruent to $\overline{P Q}$.

\qquad Date \qquad
\qquad

SECTION
 $1 A$

Ready to Go On? Quiz continued
13. T is between R and $V . R V=31$ and $V T=14$. Find $R T$. \qquad
14. N is between M and P. Find $M N$. \qquad

M is the midpoint of $\overline{A B} . A M=11 x-9$, and $B M=7 x+35$.
15. Find x.
16. Find $A M$.
17. Find $B M$.

1-3 Measuring and Constructing Angles

18. Name all the angles in the diagram.

Classify each angle by its measure.
19. $\mathrm{m} \angle X Y Z=90^{\circ}$
20. $\mathrm{m} \angle P Q R=17^{\circ}$
21. $\mathrm{m} \angle B R Z=178^{\circ}$
22. $\overrightarrow{M T}$ bisects $\angle L M P, m \angle L M T=(4 x-13)^{\circ}$, and $m \angle T M P=(2 x+17)^{\circ}$.

Find $m \angle L M P$. \qquad
23. Use a protractor and a straightedge to draw a 70° angle.

Then bisect the angle.

1-4 Pairs of Angles

Tell whether the angles are only adjacent, adjacent and form a linear pair, or not adjacent.
24. $\angle 2$ and $\angle 3$ \qquad
25. $\angle 1$ and $\angle 5$ \qquad
26. $\angle 3$ and $\angle 1$ \qquad

If $m \angle P=(9 x+20)^{\circ}$, find the measure of each of the following.
27. supplement of $\angle P$
\qquad
\qquad
\qquad
\qquad

Measuring Angles and Segments

For Exercises 1-12, use the figure at the right and the information provided to find each angle measure.

$$
\begin{aligned}
& m \angle X T Z=54^{\circ} \\
& m \angle R T Q=21^{\circ} \\
& \overrightarrow{T P} \text { bisects }=\angle Q T Z
\end{aligned}
$$

1. $\mathrm{m} \angle X T S$
2. $\mathrm{m} \angle S T R$
3. $\mathrm{m} \angle Q T Z$
4. $\mathrm{m} \angle Q T P$
5. $m \angle P T Z$
6. $\mathrm{m} \angle Y T Z$
7. $\mathrm{m} \angle X T Y$
8. $\mathrm{m} \angle R T P$
9. $\mathrm{m} \angle P T X$
10. $\mathrm{m} \angle R T X$
11. $\mathrm{m} \angle X T Q$
12. $\mathrm{m} \angle S T Q$
\qquad
\qquad

The figure at right is a number line without tic marks. For Exercises 13-18, use the number line and the information provided. D is the midpoint of $\overline{C H} . G$ is the midpoint of $\overline{D H}$. F is the midpoint of $\overline{D G}$.

Find the coordinates.

13. D
14. G
15. F

Find the lengths.
16. $D F$
\qquad
19. $D G$
20. DH
18. $G H$
21. CH
\qquad
\qquad
\qquad

SECTION
 Ready To Go On? Skills Intervention
 1-5 Using Formulas in Geometry

Find these vocabulary words in Lesson 1-5 and the Multilingual Glossary.

Vocabulary perimeter circumference	area	base $\pi(\mathrm{pi})$	height diameter	radius

Finding Perimeter and Area
 Find the perimeter and area.
 A. What is the formula for perimeter of a rectangle?
 \qquad
 Substitute the known values into the formula.
 \qquad
 Simplify.
 \qquad

What is the formula for the area of a rectangle? \qquad
Substitute the known values into the formula. \qquad
Simplify. \qquad
B. What is the formula for perimeter of a triangle? \qquad
Substitute the known values into the formula.
Simplify. \qquad
What is the formula for the area of a triangle? \qquad

Substitute the known values into the formula. \qquad
Simplify. \qquad

Finding the Circumference and Area of a Circle Find the circumference and area of a circle with radius 12 cm . Use the π key on your calculator and round to the nearest tenth.

What is the formula for the circumference of a circle? \qquad
Substitute the known values into the formula. \qquad

Simplify. \qquad
What is the formula for the area of a circle? \qquad
Substitute the known values into the formula and simplify. \qquad
\qquad
\qquad
\qquad

SECTION Ready To Go On? Skills Intervention 1-6 Midpoint and Distance in the Coordinate Plane
Find these vocabulary words in Lesson 1-6 and the Multilingual Glossary.

| Vocabulary
 coordinate plane leg \quad hypotenuse |
| :--- | :--- | :--- |

Finding the Coordinates of a Midpoint

Find the coordinates of the midpoint of $\overline{K L}$ with endpoints $K(-9,4)$ and $L(7,-6)$.

Write the Midpoint Formula.
Substitute the coordinates of K and L into the midpoint formula.
Simplify to find the coordinates of the midpoint. \qquad

Finding the Coordinates of an Endpoint

M is the midpoint of $\overline{P R}$. P has coordinates ($-7,1$), and M has coordinates (-1, -4). Find the coordinates of R.

The coordinates of R are unknown. Let the coordinates of R equal (x, y).
Apply the Midpoint Formula. $(-1,-4)=\left(\frac{-7+x}{\square}, \frac{1+y}{\square}\right)$
Write and solve an equation to find the x-coordinate of $R . \frac{-7+x}{\square}=-1 \rightarrow x=$ \square
Write and solve an equation to find the y-coordinate of $R . \frac{1+y}{\square} \quad \square \longrightarrow y=\square$
The coordinates of R are (\qquad , \qquad).

Finding Distances in the Coordinate Plane

Use the Distance Formula and the Pythagorean Theorem to find the distance, to the nearest tenth, from K to L.

Write the Distance Formula.
What are the coordinates of K ? \qquad of L ?
Substitute the coordinates of K and L into the Distance Formula.

Simplify. The length of $\overline{K L}$ is \qquad .

Write the Pythagorean Theorem.
Substitute the lengths of the legs into the Pythagorean Theorem to find the length of the hypotenuse. \qquad Simplify.

The length of the hypotenuse $K L$ is \qquad .
\qquad

SECTION
 Ready To Go On? Skills Intervention
 1B 1-7 Transformations in the Coordinate Plane

Find these vocabulary words in Lesson 1-7 and the Multilingual Glossary.

Vocabulary transformation	preimage	image	reflection	rotation	translation

Identifying Transformations

Identify the transformation. Then use arrow notation to describe the transformation.
A. Is each point and its image the same distance from a line of reflection? \qquad -
Is each point and its image the same distance from a point P ? \qquad
Have all of the points in the figure moved the same distance
 in the same direction? \qquad
Based on the information above, identify the transformation. \qquad
Use arrow notation to describe the transformation. \qquad \longrightarrow
B. Is each point and its image the same distance from a line of reflection?
Is each point and its image the same distance from a point P ? \qquad
Have all of the points in the figure moved the same distance in the same direction? \qquad -

Based on the information above, identify the transformation. \qquad

Use arrow notation to describe the transformation. \qquad \longrightarrow

Drawing and Identifying Transformations

A figure has vertices at $X(-5,4), Y(-2,0)$ and $Z(-5,-4)$. After a transformation, the image has vertices at $X^{\prime}(5,4), Y^{\prime}(2,0)$ and $Z^{\prime}(5,-4)$. Draw the preimage and image. Then identify the transformation. Plot the points and label each vertex. Connect the vertices.
How is each point related to its image? \qquad Identify the transformation.

Translations in the Coordinate Plane

Find the coordinates for the image of $\triangle J K L$ after the translation $(x, y) \longrightarrow(x-4, y-3)$. Draw the image.
What are the coordinates of J, K, and L ? $J($ \qquad
\qquad), L(
To apply $(x, y) \longrightarrow(x-4, y-3)$, subtract \qquad from the x-coordinate of each vertex and subtract \qquad from the y-coordinate of each vertex.

Find the coordinates of J^{\prime}, K^{\prime}, and $L^{\prime} . J^{\prime}(-3$, \qquad), $K^{\prime}($ \qquad 0), $L^{\prime}($ \qquad , __
Plot the image points. Connect the vertices.
\qquad
\qquad Class \qquad

SECTION

Ready to Go On? Quiz

1-5 Using Formulas in Geometry

Find the perimeter and area of each figure.

1. $6 x-5$
2.

4.

5. Find the circumference and area of a circle with radius 11 in . Use the π key on your calculator and round to the nearest tenth.

1-6 Midpoint and Distance in the Coordinate Plane

6. Find the coordinates of the midpoint of $\overline{H J}$ with endpoints $H(-7,-4)$, and $J(3,-2)$.
7. S is the midpoint of $\overline{R T}, R$ has coordinates $(-5,1)$ and S has coordinates $(-1,4)$. Find the coordinates of T.
\qquad
8. Using the distance formula, find $L M$ and $N P$ to the nearest tenth. Then determine if $\overline{L M} \cong \overline{N P}$.

\qquad
\qquad
\qquad

SECTION

Ready to Go On? Quiz continued

$1 B$

9. Using the Distance Formula and the Pythagorean Theorem, find the distance, to the nearest tenth, from $X(3,-2)$ to $Y(-3,1)$.

1-7 Transformations in the Coordinate Plane

 Identify the transformation. Then use arrow notation to describe the transformation.
10.

11.

\qquad
12. Find the coordinates for the image of figure JKLM after the translation $(x, y) \longrightarrow(x+2, y-2)$. Graph the image.
\qquad

13. A figure has vertices at $P(-6,-2), Q(-3,3)$ and $R(-1,-2)$. After a transformation, the image of the figure has vertices at $P^{\prime}(0,2), Q^{\prime}(3,7)$ and $R^{\prime}(5,2)$. Graph the preimage and image. Then, identify the transformation.

\qquad
\qquad
\qquad

SECTION

Ready to Go On? Enrichment

$1 B$

Reflections

Use the figure at the right to answer each question.

1. Reflect $\triangle W X Y$ over the x-axis. Label the vertices of the image W^{\prime}, X^{\prime}, and Y^{\prime} respectively.
2. Find the coordinates of W^{\prime}, X^{\prime}, and Y^{\prime}.
3. How are the coordinates of the preimage related to the coordinates of the image?

Use the Distance Formula to find each of the following to the nearest tenth.

4. $W X$
5. $X Y$
6. $W Y$
7. $W^{\prime} X^{\prime}$
8. $X^{\prime} Y^{\prime}$
9. $W^{\prime} Y^{\prime}$
\qquad
\qquad
\qquad
10. How are the lengths of the segments of the preimage related to the lengths of the segments in the image?
11. Find the perimeters of each triangle.
\qquad
12. How are the perimeters related? \qquad
13. What are the lengths of the base and height of $\triangle W X Y$? \qquad
14. What is the area of $\triangle W X Y$? \qquad
15. What are the lengths of the base and height of $\triangle W^{\prime} X^{\prime} Y^{\prime}$? \qquad
16. What is the area of $\triangle W^{\prime} X^{\prime} Y^{\prime}$? \qquad
17. How are the areas related? \qquad
18. What do you think is true about the perimeter and area of the image of $\triangle W X Y$ after a translation? Why?
\qquad
\qquad

Ready To Go On? Skills Intervention

1B 1-6 Midpoint and Distance in the Coordinate Plane
Find these vocabulary words in Lesson 1-6 and the Multilingual Glossary.

Vocabulary coordinate plane	leg	hypotenuse

Finding the Coordinates of a Midpoint

Find the coordinates of the midpoint of $\overline{K L}$ with endpoints $K(-9,4)$
and $L(7,-6)$.

$$
\left(\frac{x_{1}+x_{2}}{2}\right),\left(\frac{y_{1}+y_{2}}{2}\right)
$$

$$
\left(\frac{-9+7}{2}, \frac{4+-6}{2}\right)
$$

Substitute the coordinates of K and L into the midpoint formula. $\frac{\left(\frac{-9+7}{2}, \frac{4+-6}{2}\right)}{2}$
Simplify to find the coordinates of the midpoint. \qquad $(-1,-1)$

Finding the Coordinates of an Endpoint
M is the midpoint of $\overline{P R}$. P has coordinates ($-7,1$), and M has
coordinates $(-1,-4)$. Find the coordinates of \boldsymbol{R}.
The coordinates of R are unknown. Let the coordinates of R equal (x, y).
Apply the Midpoint Formula. $(-1,-4)=\left(\frac{-7+x}{\square 2}, \frac{1+y}{\boxed{2}}\right)$
Write and solve an equation to find the x-coordinate of R. $\frac{-7+x}{\square 2}=-1 \rightarrow x=5$
Write and solve an equation to find the y-coordinate of $R . \frac{1+y}{\frac{2}{2}}=-4 \rightarrow y=-9$ The coordinates of R are ($5,-9$).

Finding Distances in the Coordinate Plane Use the Distance Formula and the Pythagorean Theorem to find the distance, to the nearest tenth, from K to L.
Write the Distance Formula. $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$ What are the coordinates of K ? $(-3,-2)$ of L ? $(1,4)$
Substitute the coordinates of K and L into the Distance Formula $\frac{d=\sqrt{\left(1-{ }^{-} 3\right)^{2}+\left(4-{ }^{-} 2\right)^{2}}}{\text { Simplify. The length of } \overline{K L} \text { is }} \approx 7.2$

Simplify. The length of $\overline{K L}$ is $\frac{\approx 7.2}{a^{2}+b^{2}=c^{2}}$
Substitute the lengths of the legs into the Pythagorean Theorem to find the
length of the hypotenuse. $4^{2}+6^{2}=c^{2}$ Simplify.
The length of the hypotenuse $K L$ is ≈ 7.2
$\begin{array}{lll}\substack{\text { Copprign © by Holt, Rinetarat and Winston. } \\ \text { All rights resenver. }} & 10 & \text { Holt Geometry }\end{array}$

Ready to Go On? Quiz

1-5 Using Formulas in Geometry
Find the perimeter and area of each figure.

$P=13 x+2 ; A=9 x^{2}-7.5 x$
$P=32 x ; A=64 x^{2}$
3.

4.

5. Find the circumference and area of a circle with radius 11 in . Use the π key on your calculator and round to the nearest tenth.

$$
C \approx 69.1 \mathrm{in} . ; A \approx 380.1 \mathrm{in.}^{2}
$$

1-6 Midpoint and Distance in the Coordinate Plane
6. Find the coordinates of the midpoint of $\overline{H J}$ with endpoints $H(-7,-4)$, and $J(3,-2)$

$$
(-2,-3)
$$

7. S is the midpoint of $\overline{R T}, R$ has coordinates $(-5,1)$ and S has coordinates $(-1,4)$. Find the coordinates of T.

$$
\begin{aligned}
& \frac{(3,7)}{\text { 8. Using the distance formula, find } L M \text { and } N P \text { to the neares }} \\
& \text { tenth. Then determine if } \overline{L M} \cong \overline{N P} \text {. } \\
& \text { 4.5; 4.5; Yes, the segments are congruent. }
\end{aligned}
$$

Copyrignt by Holt, Rinehart and Winston.
All lights resenved.
12
Holt Geometry

Ready To Go On? Skills Intervention

1-7 Transformations in the Coordinate Plane
Find these vocabulary words in Lesson $1-7$ and the Multilingual Glossary.

Vocabulary

transformation preimage image reflection rotation translation

Identifying Transformations

Identify the transformation. Then use arrow notation to describe the transformation.
A. Is each point and its image the same distance from a line of reflection? No
Is each point and its image the same distance from
a point P ? Yes
Have all of the points in the figure moved the same distance in the same direction? No
Based on the information above, identify the transformation. Rotation
Use arrow notation to describe the transformation. $\triangle A B C \longrightarrow \triangle A^{\prime} B^{\prime} C^{\prime}$
B. Is each point and its image the same distance from a line of reflection? No
Is each point and its image the same distance from a point P ? No
Have all of the points in the figure moved the same distance in the same direction? YeS distance in the same direction? $\frac{\text { Yes }}{}$. Translation Use arrow notation to describe the transformation. $A B C D \longrightarrow \underline{A^{\prime} B^{\prime} C^{\prime} D^{\prime}}$

Drawing and Identifying Transformations
A figure has vertices at $X(-5,4), Y(-2,0)$ and $Z(-5,-4)$. After a transformation, the image has vertices at $X^{\prime}(5,4), Y^{\prime}(2,0)$ and $Z^{\prime}(5,-4)$. transformation, the image has vertices at $X^{\prime}(5,4), Y^{\prime}(2,0)$ and $Z^{\prime}(5,-4)$.
Draw the preimage and image. Then identify the transformation. Draw the preimage and image. Then identify the transfo
Plot the points and label each vertex. Connect the vertices. Plot the points and label each vertex. Connect the vertices.
How is each point related to its image? Same distance from y-axis Identify the transformation. Reflection across y-axis

Translations in the Coordinate Plan

Find the coordinates for the image of $\triangle J K L$ after the translation $(x, y) \longrightarrow(x-4, y-3)$. Draw the image.
What are the coordinates of J, K, and L ? $J(1,0), K(3, \underline{3}), L(\underline{5}, \underline{2})$ To apply $(x, y) \rightarrow(x-4, y-3)$, subtract 4 from the x-coordinate of each vertex and subtract 3 from the y-coordinate of each vertex. Find the coordinates of J^{\prime}, K^{\prime}, and $L^{\prime} . J^{\prime}(-3,-3), K^{\prime}(-1,0), L^{\prime}(1$
 Plot the image points. Connect the vertices.

11
Holt Geometry
Ready to Go On? Quiz continued
9. Using the Distance Formula and the Pythagorean Theorem, find the distance, to the nearest tenth, from $X(3,-2)$ to $Y(-3,1)$. 6.7

1-7 Transformations in the Coordinate Plane
Identify the transformation. Then use arrow notation to describe the transformation.
10.

11.

90° rotation; $A D C B \rightarrow A^{\prime} D^{\prime} C^{\prime} B^{\prime}$

$$
\text { Reflection } A B C D \rightarrow A^{\prime} B^{\prime} C^{\prime} D^{\prime}
$$

12. Find the coordinates for the image of figure JKLM after the translation $(x, y) \longrightarrow(x+2, y-2)$. Graph the image $J^{\prime}(-3,2), K^{\prime}(0,4), L^{\prime}(3,2), M^{\prime}(0,-4)$

13. A figure has vertices at $P(-6,-2), Q(-3,3)$ and $R(-1,-2)$. After a transformation, the image of the figure has vertices at After a transformation, the image of the figure has vertices at
$P^{\prime}(0,2), Q^{\prime}(3,7)$ and $R^{\prime}(5,2)$. Graph the preimage and image. Then, identify the transformation.
$\xrightarrow{\text { Translation }(x, y) \rightarrow(x+6, y+4)}$

Ready to Go On? Enrichment

Reflections

Use the figure at the right to answer each question.

1. Reflect $\triangle W X Y$ over the x-axis. Label the vertices of the image W^{\prime}, X^{\prime}, and Y^{\prime} respectively.
2. Find the coordinates of W^{\prime}, X^{\prime}, and Y^{\prime}.

$$
W^{\prime}(-2,-2), X^{\prime}(1,-5), Y^{\prime}(6,-2)
$$

3. How are the coordinates of the preimage related to the coordinates of the image?

The x-coordinates are the same, but the y-coordinates are opposites.
Use the Distance Formula to find each of the following to the nearest tenth.

Coper	14	Holt Geometry

section Ready to Go On? Problem Solving Intervention

2A 2-1 Using Inductive Reasoning to Make Conjectures
When you are given a table of data, look for a pattern to see if you can make a conjecture about the data.
To treat a dog for epilepsy, a veterinarian gives the dog a dose of medication and monitors the level of medication in the dog's bloodstream medication and monitors the level of medication in the dog's bloodstream
every three hours. The monitoring results are given in the table. Make a conjecture about the rate at which the amount of medication in the dog's bloodstream is changing.

Number of hours	0	3	6	9
Amount of medication in bloodstream (mg)	62	31	15.5	7.75

Understand the Problem

1. What data is being recorded by the veterinarian?

The amount of medication in the dog's bloodstream.
2. How many milligrams of medication was the dog given initially? 62 mg
3. How often is the veterinarian monitoring the dog's bloodstream? Every 3 hours

Make a Plan

4. Is the amount of medication in the dog's bloodstream increasing or decreasing? Decreasing
5. Describe the pattern you see in the data.
$62-31=\underline{31 ;} ; 31-15.5=\underline{15.5} ; 15.5-7.75=\underline{7.75}$
The medication is decreasing at a rate of 50% every 3 hours.

Solve

6. Complete the conjecture based on the patterns you observed in the data. The amount of medication in the dog's blood is decreasing at a rate of 50% or $\frac{1}{2}$ every 3 hours

Lood Back

7. Prove your conjecture or find a counterexample to show that your conjecture is false. $62 \times \frac{1}{2}=\underline{31} ; 31 \times \frac{1}{2}=\underline{15.5} ; 15.5 \times \frac{1}{2}=\underline{7.75}$ The conjecture is true.

Tion Ready to Go On? Skills Intervention				
2A 2-1 Using Inductive Reasoning to Make Conjectures				
Find these vocabulary words in Lesson 2-1 and the Multilingual Glossary.				
Vocabulary inductive reasoning conjecture counterexample				
Identifying a Pattern				
Find the next term in each pattern.				
A. $3,6,12,24, \ldots$				
Describe the pattern in the list. The pattern is generated by doubling each term.				
What number comes next in the pattern? \qquad				
Describe the pattern of the figures. Segments are drawn from one vertex to other vertices.				
Sketch the figure that will come next in the pattern.				
Making a ConjectureComplete the conjecture. The sum of two odd numbers is _-				
What is a conjecture? A statement believed to be true based on inductive reasoning.				
List some examples and look for a pattern.				
$1+3=4$				
$3+5=8$				
$5+7=12$				
$7+\underline{9}=\underline{16}$				
What kind of number is each sum, odd or even? Even				
The sum of two odd numbers is even				
Finding a Counterexample				
Show that the conjecture is false by finding a counterexample. If $A B+B C=A C$, then B is the midpoint of $A C$.				
What is a counterexample? One example that makes a conjecture not true.				
What must be true for a point to be a midpoint? The endpoints and the midpoint must				
Sketch a figure that is a counterexample to the conjecture. Sample sketch: Copyright © by Holt, Rinehart and Winston All rights reserved. 15 Holt Geometry				
SEcTion Ready to Go On? Skills Intervention				
2A 2-2 Conditional Statements				
Find these vocabulary words in Lesson 2-2 and the Multilingual Glossary.				
Vocabulary				

Writing a Conditional Statement

Write a conditional statement: "Two lines intersect in exactly one point."
Identify the hypothesis. Two lines intersect
Identify the conclusion. They intersect in exactly one point.
Write the conditional. If two lines intersect, then they intersect in exactly one point.

Analyzing the Truth Value of a Conditional Statemen

A. Determine if the conditional statement "If $a>b$, then $\frac{1}{a}>\frac{1}{b}$ is true." If false, give a counterexample.
Choose values for a and b where $a>b$; for example $a=3$ and $b=2$.
Substitute these values into the conclusion $\frac{1}{a}>\frac{1}{b}$. $\quad \frac{1}{3}>\frac{1}{2}$
Is the conclusion true? No_ Is the conditional statement true? No
B. Write the converse and inverse of the conditional statement, "If a number is divisible by 3 , then it is divisible by 9 ." Find the truth value of each.
Identify the hypothesis. A number is divisible by 3.
Identify the conclusion. A number is divisible by 9.
What is the truth value of the statement? False
The converse of a conditional is formed by exchanging the hypothesis and conclusion
Write the converse: If a number is divisible by 9 , then it is divisible by 3.
Truth value? True
The inverse of a conditional is formed by negating the hypothesis and conclusion
Write the inverse: If a number is not divisible by 3, then it is not
divisible by 9. Truth value? True

