NAME KUL. GEOMETRY MIDTERM REVIEW 2019-2020

HOUR

1. Name the intersection of \overrightarrow{JK} and plane R .

2. Use the Pythagorean Theorem to find the length of the hypotenuse.

676 = c²
Classify ∠QMP as acute, right, or obtuse.

4. How are line *p* and line *m* related?

5. What type of slope does the line have?

Positive

6. What is the slope of the line that passes through (4, 0) and (8, -1)?

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-1 - 0}{8 - 4} = \frac{-1}{4}$$

7. Classify the triangle by its angles and sides.

Acute Scalene

8. Which two triangles are congruent by the SAS theorem? Write the congruence statement.

ΔBAC ≃ ΔSRQ ΔABC ≃ ΔRSQ ΔCAB ≅ 4QRS

Name the transformation.

A dilation is a transformation that changes the size of a figure but not its shape. The preimage and the image are always similar.

10. Tell whether the transformation appears to be a dilation. Explain.

A. Yes; the figures are similar, and the image is not turned or flipped. (B.)No; the figures are not similar.

Use the figure for Exercises 11-14.

12.Name a segment on line n.

13. Name a ray with endpoint A.

14. Name the intersection of \overline{BC} and \overline{AB} .

15.S is the midpoint of \overline{RT} , and RS = 14.

16. $\overline{LM} \cong \overline{MP}$, and LM = 9. Find MP.

17. F is between E and G, EF = x - 7, and EG = 4x + 3. Find FG.

18. Z is in the interior of $\angle WXY$. m $\angle WXZ =$ 40°, and m $\angle WXY = 110^\circ$. Find

19. Z is in the interior of $\angle WXY$. If m $\angle WXZ$ = 110°, and $m\angle ZXY = 20^\circ$, what is $m \angle WXY$?

NAME

HOUR

GEOMETRY MIDTERM REVIEW 2019-2020

20. Classify $\angle QMN$ as acute, right, or obtuse.

21. $\angle A$ and $\angle B$ are complementary. $m\angle A = 29^{\circ}$. Find $m\angle B$.

22. $\angle A$ and $\angle B$ are supplementary. $m\angle A = 137^{\circ}$. Find $m\angle B$.

23. $\angle A$ and $\angle B$ are complementary. $m\angle A = (5x + 2)^{\circ}$. Find $m\angle B$.

$$90 - (5 \times +2)$$

$$88 - 5x$$

Use the figures for Exercises 24-26.

24. Find the perimeter of the square.

25. Find the area of the triangle.

$$A = \frac{b \cdot h}{2}$$
 $A = \frac{12 \cdot 4}{2}$
 $A = \frac{12 \cdot 4}{2}$
 $A = \frac{24 \cdot n^2}{2}$

26. Find the circumference of the circle. Express your answer in terms of π .

27. Find the area of a square with s = 7.6 centimeters.

28. Find the area of a circle with a diameter of 6 feet. Use 3.14 for π .

29. Find the coordinates of the midpoint of \overline{GH} with endpoints G(-5, 4) and H(-5,8).

NAME

(-10,6)

HOUR

reflection, a rotation, or a translation.

GEOMETRY MIDTERM REVIEW 2019-2020

2+12.

30. *M* is the midpoint of \overline{RS} , and *M* has coordinates (2, 6). *R* has coordinates (-10, 6). Find the coordinates of *S*.

(2,6)

Translation.

31. Use the Distance Formula to find VW.

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

 $d = \sqrt{(6-1)^2 + (-1-3)^2}$ $d = \sqrt{5^2 + (-4)^2}$ $d = \sqrt{25 + 16}$ $d = \sqrt{41}$ d = (6.4)

32. Use the Pythagorean Theorem to find *VW*.

 $a^{2} + b^{2} = c^{2}$ $3^{2} + 4^{2} = c^{2}$ $9 + 16 = c^{2}$ $\sqrt{25 - c^{2}}$ $\sqrt{5} = c$

34. Identify the transformation.

33. Identify the transformation as a

35. The coordinates of the endpoints of a segment are A(-2, 3) and B(2, 1). Find the coordinates for the endpoints of the image of \overline{AB} after the translation (x, y)

image of AB after the translation (x, y) $\rightarrow (x+3, y-2)$. $A(-2, 3) \Rightarrow (23+3, 3-2) \Rightarrow (1, 1)A$ $B(2, 1) \Rightarrow (2+3, 1-2) \Rightarrow (5, -1)B$

Use the figure below for exercises 36-41

36. What is the name given to the angle pair \angle 3 and \angle 5?

Alternate Interior

37. What is the name given to the angle pair $\angle 1$ and $\angle 5?$

Corresponding.

- 38. What is the name given to the angle pair ∠8 and ∠5? Linear Pair
- 39. What is the name given to the angle pair \angle 7 and \angle 5?

Vertical.

40. What is the name given to the angle pair $\angle 1$ and $\angle 7$?

Alternate Exterior

41. What is the name given to the angle pair ∠3 and ∠6?

Same Side Interior.

42. Given $r \parallel s$. What is the measure of $\angle 1$?

43. Find the measure of $\angle FDE$.

4x = 3/x + 20 m<FDE=3 -3x - 3x = 3(-3) x = 20 = 60

44. Find the slope of \overrightarrow{JK} through J(1, 1) and K(2, 3).

 $M = \frac{y_2 - y_1}{x_2 - x_1} = \frac{3 - 1}{2 - 1} = \frac{2}{1} = \frac{1}{2}$

45. Write *True* or *False*. The graph of x = 5 is a vertical line.

tical line.

True. (1414)

46. Write the equation of the line through (3, 4) and (2, 1) in slope-intercept form.

 $m = \frac{1-4}{2-3} = \frac{3}{3} = 3$ $use (2,1) \qquad 1 = 3(2) + b$ 1 = 6 + b -6 + 6 -5 = b 1 = 3x - 5

47. Write the equation of the line through

(4, 6) with slope $\frac{3}{4}$ in slope-intercept

form. y = y + b. $6 = \frac{3}{4}(4) + b$. $6 = \frac{3}{4}(4) + b$.

48. Determine whether the lines are parallel, intersect, or coincide.

y=-3x+4 y=-3x-8 Same slope different y-intercept

Parallel

49. Complete the sentence. If the product of the slopes of two lines equals -1, then the lines are <u>perpendicular</u>

50. Determine whether the line through (0, 4) and (2, 0) and the line through (-2, 3) and (-4, 2) are parallel, perpendicular, or neither.

 $m = \frac{(0,4)(a,0)}{2-0} = \frac{1}{2} = \boxed{2}$

 $m = \frac{2-3}{-4+(-2)} = -\frac{1}{2} \begin{bmatrix} 1 \\ -2 \end{bmatrix}$

AND -2.1 = -1 perpendiculary

51. Write *True* or *False*. y = -3x + 4 and y = 3x + 4 are parallel.

False

52. Determine whether the lines 3x + 2y = 6 and 4y = -6x - 12 are parallel, intersect, or coincide.

 $\frac{3x+2y=6}{3x} = \frac{4y=-6x-16}{4} = \frac{3x+6}{2}$ $\frac{2y=-3x+6}{2} = \frac{3}{2}x+3$ $\frac{3x+2y=6}{4} = \frac{3}{2}x+3$

same slope different y-int parallel

Use the figure for Exercises 53 and 54.

53. Classify the triangle by its angle measures.

Acute.

54. Classify the triangle by its side lengths.

Isosceles.

- 55. Complete the sentence. All of the angles in an equilateral triangle measure
- 56. What is the measure of $\angle 1$?

90-45-45

The measure of the smallest angle of a right triangle is 27°. What is the measure of the second to smallest angle?

90-27=[63°]

58. Find the measure of \angle RST.

59. Given: $\triangle GHJ \cong \triangle NOP$. What is the value of x?

60. Given: $\triangle TUV \cong \triangle TWV$. Find m∠U and UV.

9x-16=7x+22 -7x+6-7x+6 2x=28 x=14

$$m < U = 9 \times -6$$

= $9(14) - 6$
= 120°

64+5=54+7 -54-5-54-5 4=2

$$UV = 6y+5$$

= $6(2)+5$
= $12+5$
 $1=17$

61. If $\overline{AB} \cong \overline{DE}$, what additional congruence statement is needed to prove $\triangle ABC \cong \triangle DEF$ by SSS?

Use the figure for Exercises 62 and 63.

62. Write *True* or *False*. You can use AAS to prove $\triangle ABE \cong \triangle CDE$.

63. What additional congruence statement is needed to prove $\triangle ABE \cong \triangle CDE$ by

64. What postulate or theorem proves $\triangle AED \cong \triangle CEB$?

65. Find the value of x.

66. Find the value of x.

67. Solve the proportion. $\frac{2}{3} = \frac{6}{x}$

68. Given that 15x = 5y, find the ratio of x to y in simplest form.

15x = 5x y +

69. Given that 6x = 14y, find the ratio of y to x in simplest form.

70. The local day care facility has a ratio of 1 adult for every 6 children. How many adults are working if there are 42 children?

1 adult $\frac{1}{6} = \frac{x}{42}$ 6 children $\frac{1}{6} = \frac{x}{42}$ $\frac{6x=42}{x=7}$

71. Determine whether the triangles are similar. If so, write the similarity ratio and a similarity statement.

72. Identify the similarity postulate or theorem that can be used to prove $\triangle ABE \sim \triangle CDE$.

AA Similarity F

73.A rectangular field has a length of 105 feet and a width of 60 feet. On a map of the field, the width was drawn as 4 inches. What measurement should represent the length?

width
$$60 = 4$$

length $105 \times 60x = 420$
 1×7 in

74. Find DF.

 $\frac{1 \text{arge}}{\text{Small}} = \frac{360}{30} = \frac{600}{\times}$ $\frac{360 \times 18000}{\times 50}$

NAME

HOUR

GEOMETRY MIDTERM REVIEW 2019-2020

75. Find RQ.

$$\frac{6}{15} = \frac{10}{x}$$
 $6x = 150$
 $x = 25$

76. Mentone, Indiana, claims to have the world's largest egg sculpture. A 6-foot-tall person standing next to the egg sculpture casts a shadow that is 2 feet long. If the egg casts a shadow that is 4 feet long, how tall is the sculpture?

height
$$\frac{6}{2} = \frac{\times}{4}$$

Shadow $\frac{2\times 24}{\times 12.54}$

77. A drawing of a garden uses a scale of 1 in : 3 ft. Find the length of the garden if the length on the drawing is 13 inches.

Lin
$$\frac{1}{3} = \frac{13}{13}$$
 inches feet. $1 = \frac{13}{3} = \frac{13}{13}$ inches feet.

78. Two points on k are (-4, 3) and (2, -1). Write a ratio expressing the slope of k.

$$m = \frac{-1 - 3}{2 + (+4)} = \frac{-4}{6} = \boxed{-\frac{2}{3}}$$

79. Find SP.

$$\frac{\text{Small }\Delta}{\text{large }\Delta} = \frac{7}{14} = \frac{12}{\times}$$

$$7 \times = 168$$

$$\times = 24$$

80. Compare FD and GJ.

Use the figures for Exercises 81 and 82.

81. Order the sides of △*KLM* from smallest to largest.

RM, KL, LM

82. Find the range of values for x.

$$37^{\circ} > 32^{\circ}$$

 $KM > HJ$
 $8 > 2x - 12$ $2x - 12 > 0$
 $+12$ $+12$ $+12$ $+12$
 $20 > 2x$ $2x > 12$
 $10 > x$ $x > 6$

83. Use Pythagorean Theorem to find the value of *x*.

84. Write *True* or *False*. A right triangle has sides that measure 5, 12, and 13. The side lengths form a Pythagorean triple.

85. The measures of the side lengths of a triangle are 9, 12, and 15. Classify the triangle as acute, right, or obtuse.

$$9^{2} + 12^{2} ? 15^{2}$$

 $81 + 144 ? 225$
 $225 = 225$
 $Right$

86. Classify the triangle with side lengths of 16, 7, and 12.

